MATH 155 - Chapter 9.4-Comparison Series:

(Can only be applied to positive series)
Dr. Nakamura

1. Definition: Let $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ be positive-term series. We say that $\sum_{n=1}^{\infty} b_{n}$ dominates $\sum_{n=1}^{\infty} a_{n}$ if $a_{n} \leq b_{n}$ for all $n \geq 1$.

2. Theorem: Direct Comparison Test

Suppose $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are positive-term series such that $0<a_{n} \leq b_{n}$ for all $n \geq N$ for some positive integer N. (ie. b_{n} dominates a_{n} for all $n \geq N$.) Then

1. If $\sum_{n=1}^{\infty} b_{n}$ converges then $\sum_{n=1}^{\infty} a_{n}$ converges.
2. If $\sum_{n=1}^{\infty} a_{n}$ diverges, then $\sum_{n=1}^{\infty} b_{n}$ diverges.

3. Theorem: Limit Comparison Test

Suppose $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are positive-term series, and

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L .
$$

1. If $0<L<\infty$, then $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ both converge or diverge together.
2. If $L=0$ and $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.
